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Spatial vs (Spatio-)temporal point processes

I In this lecture we will focus on point processes on the time
line: temporal point processes.

I All the methods you have learned for spatial point processes
can be used on the time line, but the fact that the time line
has a natural direction opens up other possibilities.

I We will explore one such possibility: the conditional intensity
function.

I We will later generalize this to marked points process, and
obtain spatio-temporal point processes by letting the marks
represent locations.
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Temporal point pattern data

I An observed point pattern on the time line typically represents
a set of events observed occuring at various points in time.

I Examples of temporal point patterns:
I Earthquakes or other disasters
I Visits at a server
I Accidents at a road junction

I Temporal point processes can also have marks:
I Magnitudes or locations of earthquakes
I Time spent by a visitor at a server
I Severity, cost or locations of an accident
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Definition of an unmarked temporal point process

I Definitions:
1. a random sequence T on R
2. a random counting measure N on R
3. a random sequence of intervals T on [0,∞)

I Interpretations:
1. Event times: T = (. . . , t1, t2, . . .) is a sequence of event times.
2. Number of events: N(A) counts the number of events falling

in any Borel set A ⊂ R.
3. Interevent times: T = (. . . , τ1, τ2, . . .) is a sequence of

non-negative random variables interevent times.

I All three definitions are equivalent.

I 3. is rather specific to temporal point processes while 1 and 2
is similar to definitions of spatial point processes.

I Simple (or orderly) point process: We only consider cases
where no events occur at the same time with probability one.

I In practice we often consider a point process defined on an
interval of finite length.
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The Poisson process - the simplest point process

I The Poisson process can be defined just like the spatial case.

I Assume Λ locally finite measure on R with density λ
(Λ(B) =

∫
B λ(s)ds).

I Definition:
T is a Poisson process with intensity measure Λ (or intensity
function λ) if for any bounded region B with Λ(B) > 0:

1. N(B) ∼ po(Λ(B))
2. Given N(B), events in B are i.i.d. with density ∝ λ(u), u ∈ B.

I If λ(s) = λ is constant, the Poisson process is called
homogeneous.

I Interpretation: The Poisson process is a model for events
occurring along the time line independently of each other

I This process has limited practical usefulness - we need models
where events can depend on each other.
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Evolutionarity, history and interevent times

I Evolutionarity: what happens in the present depends only on
the past, not the future.

I History: Ht = (..., t1, t2, ..., tn) is a vector of all past events
ti ≤ t.

I We can define a point process by the distribution of all
interevent times, τn = tn − tn−1, one at a time.

I Given the events up to event n, Htn , denote the density
function for the time of the next event by f (t|Htn) for t > tn.
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Simple examples using interevent time distributions

I Renewal process: A point process where all the interevent
times have i.i.d. distributions, i.e. f (tn|Htn−1) = g(tn − tn−1).

I For renewal processes f only depends on the last event.

I Homogeneous Poisson process: Special case of renewal
process with exponential distributed interevent time.

I Simulations of renewal processes shown below:
I Upper process is clustered.
I Middle process is Poisson.
I Lower process is regular.
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Exercises

1. What kind of interevent distributions leads to renewal
processes that are more clustered than a Poisson process?

2. How about more regular than a Poisson process?

3. Make a quick implementation in R of renewal processes using
either of the above interevent distributions. Can you visually
see the regularity/clustering?
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The conditional intensity function

I More complicated processes than renewal processes are not
handled well by specifying the interevent time distribution.

I Conditional intensity (/risk/rate/hazard) function:

λ∗(t) =
f (t|Htn)

1− F (t|Htn)

I f (t|Htn) and F (t|Htn) are the distribution and density
functions of the interevent times conditioned on the history.

I Interpretation:

λ∗(t)dt ≈ E[N(dt)|Ht−] ≈ P(N(dt) > 0|Ht−)

I Integrated conditional intensity function: Λ∗(t) =
∫ t
0 λ
∗(s)ds.

I The examples so far formulated using conditional intensity:
I Renewal process: λ∗ is found directly from the above formula.
I Poisson process: λ∗(t) = λ(t) is independent of Ht .
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Exercises

1. Prove that the homogeneous Poisson process defined by i.i.d.
exponentially distributed waiting times with parameter λ has
λ∗(t) = λ.

2. Find the intensity function for a renewal process with a
uniform distribution on the interval [0,1] as interevent time
distribution. Note that this increases to infinity within finite
time, when no new points appear; does this intuitively make
sense?
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A proper example: The Hawkes process

I Hawkes process:

λ∗(t) = µ+ α
∑
ti<t

γ(t − ti )

where γ(t) is a density, e.g. γ(t) = β exp(−βt)
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I µ is called immigration rate, γ is called offspring intensity, α is
the mean number of offsprings, β controls the times of
offsprings.

I This produces clustered point patterns.
I This is a model for reproducing populations, e.g. plants or

viruses, but also reproducing in a more abstract sense, e.g.
earthquakes, crimes, or terrorist attacks. 12 / 40



Interpreting the Hawkes process

I The Hawkes process can also be defined using a clustering
and branching structure, one generation at a time.

I Define the Hawkes process as the union of the following:
I Generation 0: Homogeneous Poisson process with intensity µ.
I Generation 1: Each generation 0 point, say ti , generates

independent Poisson processes with intensity αγ(t − ti )
I Generation 2: Each generation 1 point, say tj , generates

independent Poisson processes with intensity αγ(t − tj)
I Etc. until there are no points in a generation (if α < 1 this

happens eventually with probability 1).
I Note that the intensity of each of these processes add up thus

giving the correct conditional intensity µ+ α
∑

ti<t γ(t − ti ).
I On the next slide, we show that the conditional intensity

function uniquely defines a process, thus the two definitions
are equivalent.

I The definition using generations helps us interpreting the
Hawkes process, but in general it may not be easy to interpret
a specific conditional intensity function.
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Can we choose any function as conditional intensity?

I Proposition:

f (t|Htn) = λ∗(t) exp

(
−
∫ t

tn

λ∗(s)ds

)

F (t|Htn) = 1− exp

(
−
∫ t

tn

λ∗(s)ds

)
I Proposition: A conditional intensity function λ∗(t) uniquely

defines a point process if it satisfies the following conditions
for any point pattern (. . . , t1, . . . , tn) and any t > tn:

1. λ∗(t) is non-negative and integrable on any interval starting at
tn, and

2.
∫ t

tn
λ∗(s)ds →∞ for t →∞.
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Relaxing condition 2 for the finite case

I For finite point processes (i.e. a finite number of points with
probability one), we drop item 2., i.e.

∫ t
tn
λ∗(s)ds →∞ for

t →∞ in the proposition.

I This leads to improper distribution functions F for the
interevent time, i.e. limt→∞ F (t|Htn) = p < 1.

I Interpretation: with probability 1− p we get no more points.

I Example: A unit rate Poisson process on the interval has
conditional intensity function λ∗(t) = 1[t ∈ [0, 1]], leading to
the following distribution function for the first point

F (t|H0) = 1−exp

(
−
∫ t

0
1[s ∈ [0, 1]]ds

)
= 1−exp (−min{t, 1}) .

which has maximum value of 1− exp(−1) ≈ 0.63. I.e. with
probability 0.63 we get one (or more) points, and probability
0.37, the process terminates with no points.
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Closed form calculations with λ∗

I Some quantities predicting the future can be derived on closed
form.

I For example, in the unmarked case, the probability of getting
no events in the interval (s, t], given that we know what
happened up to time s:

p = 1− F (t|Hs) = exp

(
−
∫ t

s
λ∗(u)du

)
I For a Hawkes process with γ(t) = β exp(−βt):

p = exp

(
µ(s − t) + α

∑
ti<s

(
e−β(t−ti ) − e−β(s−ti )

))

I Other quantities may be hard to calculate, such as the mean
number of events within some interval.

16 / 40



Exercise

1. Create a conditional intensity function for a point process,
where an event will reduce the chance of having events
immediately after (i.e. events reduce the conditional intensity
function). Check that it fulfill the conditions for being a
proper conditional intensity function.

2. What kind of point pattern will your process produce (i.e.
clustered, regular or neither)

3. Calculate the probability that an event will fall within the
interval (s, t] given that we have observed the process up and
including time time s.

4. Modify your process such that it terminates after some time
or condition has been met.
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The marked case

I History: In the marked case the marks are also included in the
history Ht = (..., (t1, κ1), (t2, κ2), ..., (tn, κn)).

I Definition: Conditional intensity function:

λ∗(t, κ) = λ∗(t)f ∗(κ|t)

where f ∗(κ|t) is the density of the mark of an event at time t,
possibly depending on the history and t, and λ∗(t) is now
called the ground intensity.

I Note that the ground intensity may depend on previous marks.

I Thus

λ∗(t, κ) = λ∗(t)f ∗(κ|t) =
f (t|Htn)f ∗(κ|t)

1− F (t|Htn)
=

f (t, κ|Htn)

1− F (t|Htn)

Note: F (t|Htn) is only the distribution function for time (not
mark), but may still depend on previous marks.
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Types of marks

I Dependence structure:
I Unpredictable marks: f ∗(κ|t) does not depend on the past.
I Independent marks: f ∗(κ|t) does not depend on the past or

future (= future does not depend on marks).
I Note that independent marks are also unpredictable.

I The marks κi can belong to any probability space M:
I M is finite, corresponding to different types of points (a

so-called multitype process). Here f ∗(κ|t) is the probability
function.

I M ⊆ N, again f ∗(κ|t) is the probability function.
I M ⊆ Rd , here f ∗(κ|t) is the density function.
I More complicated spaces...
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Example: ETAS model

I ETAS: Epidemic Type Aftershock Sequence

I Data: Earthquakes with times ti and magnitudes κi > κ0.

I The ETAS model is a marked Hawkes process with ground
intensity (this is just one version)

λ∗(t) = µ+ A
∑
ti<t

eα(κi−κ0)
(

1 +
t − ti
c

)−p
and (conditional) mark density f ∗(κ|t) = δe−δ(κ−κ0).

I Parameters:
I µ > 0 controls number of main earthquakes
I A > 0 controls number of aftershocks
I α > 0 controls the relation between magnitude and number of

aftershocks
I c > 0 and p > 0 controls times of aftershocks
I δ > 0 controls magnitudes
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Another example: Stress-release model

I Another model for earthquakes focuses on the underground
tension, which is built-up and then released as an earthquake.

I The stress-release model (again one version) has ground
intensity

λ∗(t) = ea+b(t−cS(t))

where
S(t) =

∑
ti<t

10d(κi−κ0)

and a ∈ R and b, c , d > 0 are parameters, and mark density is
the same as for the ETAS model.
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Exercises

1. Are the marks unpredictable, independent or neither in the
ETAS and stress-release models?

2. Does the magnitude of an earthquakes influence the number
and/or magnitudes of later earthquakes in the two models?

3. When in the future is the intensity at its maximum after the
last observed earthquake for the two models?

4. Are the models clustered, regular or neither?

5. Would you expect both models to fit the same earthquake
dataset well?
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R/PtProcess

I Spatstat does not contain temporal point process modeling
using the conditional intensity function, so we will use
another, much smaller, package PtProcess.

I R-demo, part 1: Conditional intensity functions and models in
R/PtProcess.
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Spatio-temporal processes

I If we include locations as marks, i.e. M ⊆ Rd (typically d = 2
or d = 3), we get a spatio-temporal point process.

I We can also have other marks than locations (e.g. magnitude)
- then we call the process a marked spatio-temporal point
process.

I The reason for treating times as the point and locations as
marks is that we can then use all the theory for the
conditional intensity function for point process modelling.

I Unfortunately none of the examples in PtProcess include
spatial coordinates, so I do not have any practical examples to
show.
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Example: Spatial ETAS model

I We can include locations of earthquakes into the ETAS model.

I Earthquake i : time ti , magnitude mi and position (xi , yi ).

I Conditional intensity:

λ∗(t, x , y ,m) = f (m −m0)
(
µ(x , y)+∑

ti<t

ν(t − ti )g((x , y)− (xi , yi ))h(mi −m0)
)

I ν controls the temporal decay, fx. ν(t) =
(
1 + t

c

)−p
I µ controls the location of main shocks

I g controls the location of aftershocks, fx. density of a normal
distribution

I h controls the effect of the magnitude on the number of
aftershocks, h(m) = eαm

I f is the density of magnitudes, fx an exponential density
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Likelihood function

I Observed data:
I event times (t1, . . . , tn) ∈ [0, b)
I maybe with marks (κ1, . . . , κn) ∈M

I One way of estimating parameters in a model from real data
is obtaining and maximizing the likelihood function.

I Likelihood function, unmarked case:

L =

(
n∏

i=1

λ∗(ti )

)
exp(−Λ∗(b))

I Likelihood function, marked case:

L =

(
n∏

i=1

λ∗(ti , κi )

)
exp (−Λ∗(b)) .
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Exercise

1. Prove that for the homogeneous Poisson process with intensity
λ on the interval [0, b), the likelihood function is given by

L = λne−λb.

2. Prove that the maximum of L is achieved at

λ̂ =
n

b
.

(Hint: the logarithm simplifies the problem...)
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Likelihood function for the Hawkes process

I Hawkes process (with exponential offspring rate):

L =
n∏

i=1

(
µ+

∑
ti<t

αβe−β(t−ti )

)
×

exp

(
µb + α

(
n − e−βb

∑
ti

eβti

))

I This cannot be maximized wrt. (µ, α, β) analytically.

I Maximum likelihood estimation: The MLE for the
homogeneous Poisson process is easily found, but in general it
is hard to maximise the likelihood function analytically.
However, the maximum can be approximate using e.g.
Newton-Raphson, since L is known and easy to calculate.
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R/PtProcess

I R-demo, part 2: Maximum likelihood estimation in
R/PtProcess.
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Simulation of a point process - why?

I What does a point pattern typically look like?

I Prediction.

I Model checking.

I Approximation of quantities that are hard to obtain.
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Simulation

I Homogeneous Poisson process: Simulate the interevent times
as independent Exp(λ) variables.

I Simulation of general point processes specified by a
conditional intensity function can also be done by simulating
exponential variables one at a time, and afterwards modify
these this using the conditional intensity function.

I Two approaches:

1. Thinning: A newly simulated point is removed with some
probability.

2. Inversion: A newly simulation point is moved according to
some distribution.
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Simulation using Ogata’s modified thinning algorithm

I Unmarked case: We use dependent thinning recursively:

1. Generate next potential point t̃ from t − t̃ ∼Exp(λmax).
2. Generate U ∼ Unif(0, 1).
3. If U ≤ λ∗(t)/λmax keep point, i.e. tn+1 = t;

otherwise throw point away.
4. Let t̃ := t, and start over.

t1 · · · tn t̃ t

λmax = λ∗(t̃)

λ∗(t)

I Marked case: every time a new point ti is kept, the mark
should be simulated using the mark density f ∗(κi |ti ).
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Exercises

1. Consider an unmarked version of the stress-release model with
conditional intensity function λ∗(t) = exp(a + bt − cN(t))
where a ∈ R and b, c > 0 are parameters, and
N(t) =

∑
ti<t 1 is the number of points strictly before time t.

Make an illustration of the conditional intensity function for
some given point pattern.

2. Note that the conditional intensity rises unboundedly in
intervals with no points; why is this problematic for the
Ogata’s modified thinning algorithm?

3. One solution is to include a maximum distance forward in
time that we will go from time t, say l(t), so that the
conditional intensity is bounded in this interval, and we can
define a λmax here. Explain how to simulate the above process
using this (hint: if the simulated exponential variable goes
beyond t + l(t) there simply is no point in the interval
[t, t + l(t)] and the algorithm starts again at t + l(t)).
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Simulation using inversion (or transformation)

I Inversion Theorem (first half):
If {si}i∈Z is a unit rate Poisson process on R, and
ti = Λ∗−1(si ), then {ti}i∈Z is a point process with cif λ∗(ti ).

I Finite process: Poisson process on [0, b) transforms into point
process on [0,Λ∗−1(b)) with intensity λ∗(ti ).

I Simulation by inversion: Simulate si ∼ Exp(1) and transform
to ti = Λ∗−1(si ) one at a time until the end is reached.

sn sn+1 tn tn+1

I Note: Λ∗−1 is often not available on closed form - numerical
approximation.

I Marked case: every time a new point ti is simulated, the mark
should be simulated using the mark density f ∗(κi |ti ).
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Exercises

1. Consider again the process with conditional intensity function
λ∗(t) = exp(a + bt − cN(t)). Given the point pattern before
t, say t1, . . . , tn, show that the integrated conditional intensity
function is given by

Λ∗(t) =
n+1∑
i=1

ea−c(i−1)
1

b

(
ebti − ebti−1

)
where t0 = 0 and tn+1 = t.

2. Note that t is only present in the last term of the sum, and
find Λ∗−1. Explain how to simulate the process using
simulation by inversion.
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R/PtProcess

I R-demo, part 3: Simulation in R/PtProcess.
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Model checking: Residual analysis

I Inversion Theorem (second half):
If {ti}i∈Z is a point process with intensity λ∗(ti ), and
si = Λ∗(ti ), then {si}i∈Z is a unit rate Poisson process.

I Residual analysis: transform data using Λ̂∗ (estimated Λ∗) - if
the model fits well, then {si}i∈Z ≈ unit-rate Poisson.

I Algorithm: Calculate si = Λ̂∗(ti ) where {ti}i∈Z is the data,
and check whether τi = si − si−1 looks like i.i.d. Exp(1)
variables, e.g.:
I QQ-plot or histogram to see whether they look exponential
I Plot τi vs. τi−1 to see if there is any pattern (i.e. dependence)

I Any discrepancy from a unit-rate Poisson process may give
information about how the model does not fit the data, e.g. if
{ti}i∈Z is too clustered for a chosen model, then {si}i∈Z is
too clustered for a Poisson process.
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R/PtProcess

I R-demo, part 4: Residual analysis in R/PtProcess.
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Everything needed for a statistical analysis seems to be
covered now...

Typical steps in a statistical analysis:

I Preliminary analysis (simulation of potential models)

I Model specification and interpretation

I Parameter estimation (maximum likelihood)

I Model checking (residual analysis or simulation based
approaches)

I Prediction - simulation or calculation using λ∗
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Analysis of data

In the remaining part of this lecture, you should analyse a dataset.

1. Fit point process models (e.g. etas gif, srm gif,

simple gif) to datasets (e.g. Ogata, NtChina, Tangshan)
in PtProcess.

2. The analysis should include model specification, parameter
estimation, residual analysis, simulation, and conclusions
about the data.
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