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Statistics of Persistence Diagram

As any statisticians we should ask ourselves:

• How persistence diagrams behave under
randomness/perturbation of the data?

• What is the behaviour of the mean persistence diagram? The
average over iid realisations?

• Do I know the distribution of the PDs under suitable assumptions
on my data/observations?

• How confident may I be in the ”random” distribution of a
persistence diagram under random perturbation?
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Analysing the persistence diagram
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Visually

Let’s look at 3 realisations of point processes.

The estimate of the Ripley’s K function against the one of a Poisson
point process (in red):
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What about the PD?

Here are the corresponding PDs of the loops for the three point
pattern above.
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• Visually we observe a difference.

• Are they different enough – ”far away/distant” from each others?

• Is this difference statistically significant?
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Metric Aspects

• The space of persistence diagram is a metric space.
• The metric is defined by Bottleneck distance.
• Matching: Let A and B be two finite sets in R2. A perfect
matching between A and B is a set of edges (a, b) with a ∈ A and
b ∈ B such that each vertex is incident to exactly one edge.

• Edge Cost: of (a,b) in the matching is

d∞(a, b) = |a − b|∞ = max{|ax − bx |, |ay − by|}.

• Matching Cost is the sum of the cost of all the edges.
• Let D1 and D2 be two persistence diagrams. The bottleneck
distance between them is defined by:

W∞(D1,D2) = min
P

max
(a,b)∈P

d∞(a, b).

for all possible matching P.
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Bottleneck Distance – Optimal matching

The matching works because we add the diagonal to the PDs.
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Issues with the Persistence Diagram

• As said, the persistence diagrams lay in a metric space. But we
do not know much more.

• Consequently, it is not easy to define the mean of PDs. See Fasy
et al. (2014).

• It is also unknown how to take the average of several PDs.

A solution:

• Define summary statistics, possibly functional, of the PD.

• Numbers and functions live in more convenient mathematical
spaces, for example L2(R).

• Hence it becomes easier to take the average, define confidence
intervals ...

An other solution: kernel techniques, see Carriere et al. (2017).
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Betti Numbers

Definition: Let b, d > 0 with b < d and D be a PD. The persistent Betti
number is

βD
b,d = #{(x, y) ∈ D, x ≤ b, y ≥ d}.

Example: The number of point in red is βD
0.4,0.4.

Important: The knowledge of βD
b,d for all b, d defines completely D.

7/25



Landscapes

Persistence landscapes have been introduced by in Bubenik (2015).
They are a collection of continuous piecewise linear function index by
p ∈ N.

To define them, introduce for each point p = (x, y) =
( b+d

2 , d−b
2

)
representing a birth-death pair (b, d) in the persistence diagram.

Let

Λp(t) =


t − x + y, t ∈ [x − y, x]
x + y − t, t ∈ (x, x + y]
0, otherwise

=


t − b, t ∈ [b, b+d

2 ]

d − t, t ∈ ( b+d
2 , d]

0, otherwise.
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Rotated Persistence Diagram
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Definition Landscapes

Definition: Let k ∈ N and T > 0. The k-th persistence landscape of a
persistence diagram is

λ(k, t) = kmax
p

Λp(t), t ∈ [0,T ].

• It characterizes completely the persistence diagram.

• It focus on the topological features with longer lifetimes.

• This is good for many applications like support estimation but
not for spatial statistics.
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Rotated Persistence Diagram and Landscapes
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Accumulated Persistence Function

• Let’s start from the rotated persistence diagram.
• For any point p in a persistence diagram D let mp and lp denotes
the mean age and lifetime of the feature p.

Definition: The APF of the persistence diagram D of the topological
features of dimension k is defined for m > 0 by

APFk(m) =
∑
p∈D

lp1{mp≤m}.

• There is one APF for the connected components, one for the
loops, one for the voids ...

• It characterizes completely the persistence diagram, if no
multiplicity on the points.

• It does not focus on feature with long or short lifetimes.
• Hence it is, to some extent, more suitable for spatial statistics.
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Rotated persistence diagram and APF
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Central Limit Theorem
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CLT on Betti numbers

Preliminaries:

• As you may have seen, the asymptotics in spatial statistics is
often different than in ”iid” setting.

• The asymptotic is not focused on the number of observations,
often noted n, that goes to infinity.

• Instead, it considers asymptotic on ”increasing domains”,
meaning the windows of observations grows.

• In practice, it means that you assume that you observe your
points on a sufficiently large domain to capture the dependence
structures of the observed phenomenon.
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CLT on Betti numbers

Interest of a CLT:

• If you know the behaviour of the persistence diagram when the
data follows a known distribution, then you can device a
goodness of fit test for this distribution based on the persistence
diagram.

• Thus we need a central limit theorem for persistence diagram.

• As the spaces of persistence diagram is too difficult to work in,
we chose in place to work with Betti numbers.
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Notation

This will be more mathematically involved. I apologize for the less
mathematically involve among you.

• For any bounded function f : R2 → R and persistence diagram D:

〈f ,D〉 =
∑

(b,d)∈D

f (b, d).

You take the sum of the values of f evaluated at each
(birth/death) point of the persistence diagram.

• Wn = [−
√

n
2 ,

√
n

2 ]2, for n ∈ N.

• X a stationary point process.

• Xn = X ∩ Wn

• Dn the persistence diagram obtained from Xn.
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Assumptions I

• X is stationary.

• We implicitly considered only the topological feature with death
time smaller than M . If not, we get problems related to unsolved
problem in percolation theory.

• (Technical) We need to control the Palm expectation:

∀p ∈ N, sup
l≤p,x∈R2l

E!
x [X

p
1] < ∞.

• X exhibits exponential decay of correlations:
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Assumptions II

• X exhibits exponential decay of correlations: For all k ≥ 1, there
exists ρ(k), a < 1, and φ : [0,∞) → [0,∞) such that

1. limt→∞ tnφ(t) = 0 for all n ≥ 1,
2. lim inft→∞ log φ(t)/tb < 0 for some b > 0,
3.

|ρ(p+q)(x ∪ x′)− ρ(p)(x)ρ(q)(x′)| ≤ (p + q)a(p+q)φ(dist(x, x′))

for any x = {x1, . . . , xp}, x′ = {xp+1, . . . , xp+q} ⊂ R2.

• For some ν > 0:
lim inf
n→∞

Var〈f ,Dn〉
nν

= ∞.
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Central Limit Theorem

Under all the assumptions mentioned above,

〈f ,Dn〉 − E[〈f ,Dn〉]√
Var(〈f ,Dn〉)

converges in distribution to a standard normal random variable
N (0, 1) as n → ∞.

Can we do better? Yes we can have a functional CLT.
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Functional Central Limit Theorem (FCLT)

Under an additional technical (but smooth) assumption → FCLT for
the Betti numbers:

• Let D,D′ be the persistence diagrams of the connected
components and loops, respectively.

• The one-dimensional process{
n−1/2(βDn

0,d − E[βDn
0,d]

)}
d≤rf

converges weakly in Skorokhod topology to a centered Gaussian
process.

• The two-dimensional process{
n−1/2(βD′

n
b,d − E[βD′

n
b,d]

)}
b,d≤rf

converges weakly in Skorokhod topology to a centered Gaussian
process.
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Application to (goodness of fit) deviation test.

• Thanks to the FCLT, we know the behaviour of ”any” functions of
the betti numbers.

• This can be use to device deviation tests.

Setting:

• I observe the point pattern x.

• I want to test if x is a realisation of a point process X0.

• Let’s choose a summary statistics based on the persistence
diagram (more details later): T .

• Thanks to the FCLT I know, up to some simulations, the behaviour
of T and how likely it can deviate from its usual behaviour.

• If it deviates too much, I reject the assumption that x is a
realisation of X0.
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Statistics based on the persistence diagram

We may use almost any statistics based on the persistence diagram.

Using the connected components:

• For a given r > 0:
∫ r

0
∑

i≤d 1(0,i)∈Ddd. I.e. the function of the
number of deaths of connected components before time d for d
varying from 0 to r .

• Intensity scaled version: 1√
ρ|W |

∫ r/√ρ

0
∑

i≤d 1(0,i)∈Ddd.
• supm∈[0,R] APF0(m) or

∫
m∈[0,R]

APF0(m)dm.

Using the loops:

•
∫

m∈[0,R]
APF1(m)dm.

• Intensity scaled version: 1
|W |√ρAPF1(

r√
ρ ) where ρ is the

(unknown) intensity of the process
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Limitations

• Although we know a FCLT, we do not always know the mean and
variance of the asymptotic Gaussian process.

• Hence it needs to be estimated by simulations which may be
computationally difficult.

• Our results hold when the intensity of the point process is
supposed to be known. It is never the case in practice.

• The best we could have done is to propose an ”intensity scaled”
version which in simulation study provides better results.
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Coding - R package TDA
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Additional References

Books on the theory:

• Munkres, J.R. (1984). Elements of Algebraic Topology (1st ed.).
CRC Press.

• Hatcher, A. (2002). Algebraic Topology. Cambridge University
Press. Freely available on the website of the author.

Online ressources:

• The master course Foundations of Geometric Methods in Data
Sciences of Mathieu Carriere and Frederic Cazals: website

• The master course INF556 of Steve Oudot: website

Finally, the documentation of the various python libraries: gudhi,
giotto-tda, dionysus may also provides you with many showcases of
applications of TDA.
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https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
http://www-sop.inria.fr/abs/teaching/centrale-FGMDA/centrale-FGMDA--cazals-carriere-2020-2021.html
https://www.enseignement.polytechnique.fr/informatique/INF556/


Thank you for your attention
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