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Introduction

◮ Determinantal point processes (DPP) are inhibitive (or regular, or repulsive)

point processes.

◮ Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.

◮ Several theoretical studies appeared in the 2000’s.

◮ Statistical modeling came along in the 2010’s and onward.
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Notation

◮ For any integer n > 0, denote ρ
(n) the n’th order product density function of X .

Intuitively,

ρ
(n)(x1, . . . , xn) dx1 · · · dxn

is the probability that for each i = 1, . . . , n,

X has a point in a region around xi of volume dxi .
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Notation

◮ For any integer n > 0, denote ρ
(n) the n’th order product density function of X .

Intuitively,

ρ
(n)(x1, . . . , xn) dx1 · · · dxn

is the probability that for each i = 1, . . . , n,

X has a point in a region around xi of volume dxi .

In particular ρ = ρ
(1) is the intensity function.
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Notation

◮ For any integer n > 0, denote ρ
(n) the n’th order product density function of X .

Intuitively,

ρ
(n)(x1, . . . , xn) dx1 · · · dxn

is the probability that for each i = 1, . . . , n,

X has a point in a region around xi of volume dxi .

In particular ρ = ρ
(1) is the intensity function.

◮ For any function C : Rd
× R

d
→ C, denote [C](x1, . . . , xn) the n × n matrix with entries

C(xi , xj).

Ex : [C](x1) = C(x1, x1) [C](x1, x2) =

(

C(x1, x1) C(x1, x2)
C(x2, x1) C(x2, x2)

)

.
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Definition of a DPP

Definition
Let C be a function R

d × R
d → C. X is a determinantal point process with kernel C,

denoted X ∼ DPP(C), if its product density functions satisfy

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), n = 1, 2, . . .

For existence, conditions on the kernel C are mandatory

◮ C must e.g. satisfy: det[C](x1, . . . , xn) ≥ 0 for all x1, . . . , xn.

◮ Henceforth we assume

(C1) C is a continuous (complex) covariance function.
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Basic properties (if X ∼ DPP(C) exists)

◮ The intensity of X is ρ(x) = C(x , x).

◮ The pair correlation function is

g(x , y) :=
ρ(2)(x , y)

ρ(x)ρ(y)
= 1 −

C(x , y)C(y , x)

C(x , x)C(y , y)
= 1 − |R(x , y)|2

where R is the correlation function corresponding to C.

◮ Thus g ≤ 1 (i.e. inhibition) since C is Hermitian by (C1).

◮ If X ∼ DPP(C), then XB ∼ DPPB(CB)

◮ Any smooth transformation or independent thinning of a DPP is still a DPP with

an explicitly given kernel.
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Existence

By Mercer’s theorem, for any compact set S ⊂ R
d , C restricted to S × S, denoted

CS, has a spectral representation,

CS(x , y) =

∞
∑

k=1

λS
k φ

S
k (x)φ

S
k (y), (x , y) ∈ S × S,

where λS
k ≥ 0 and {φk} is a set of orthonormal basis functions on S, i.e.,

∫

S

φS
k (x)φ

S
l (x) dx = 1{k=l}.

Theorem (Macchi, 1975)
Under (C1), existence of DPP(C) is equivalent to :

λS
k ≤ 1 for all compact S ⊂ R

d and all k.
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Simulation

Let X ∼ DPP(C). We want to simulate XS for S ⊂ R
d compact.

Theorem (Hough et al. (2006))
For k ∈ N, let Bk be independent Bernoulli r.v. with mean λS

k . Define

K (x , y) =

∞
∑

k=1

Bkφ
S
k (x)φ

S
k (y), (x , y) ∈ S × S.

Then DPP(CS)
d
= DPP(K ).

Note that almost surely there is a finite number of ones in the Bernoulli sequence

Bk since
∑

λS
k =

∫

S
C(x , x) dx < ∞.
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Simulation (cont’d)

Effectively we pick out n < ∞ eigenfunctions with probability according to their

eigenvalues and simulate the DPP with finite rank kernel

K (x , y) =

n
∑

k ′=1

φS
k ′(x)φS

k ′(y), (x , y) ∈ S × S.

This is a projection kernel, and the corresponding DPP can be simulated using

rejection sampling.

The algorithm always produces n points. Thus,

n ∼

∞
∑

k=1

Bk , E[n] =

∞
∑

k=1

λS
k , Var[n] =

∞
∑

k=1

λS
k (1 − λS

k ).
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Stationary kernels

Consider a stationary kernel: C(x , y) = C0(x − y), x , y ∈ R
d .

Its Fourier transform (or spectral density) is:

ϕ(x) =

∫

C0(t)e
−2πix·t

dt , x ∈ R
d .

Theorem
Under (C1), if C0 ∈ L2(Rd ), then existence of DPP(C0) is equivalent to

ϕ ≤ 1.

→ This induces a restriction on the parameter space.

In practice, this restriction implies that if the intensity is large the range (effective

support) of C0 must be small. I.e. there is a trade-off between strong inhibiton and

large intensity.
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Approximation

Without loss of generality we consider S = [−1/2, 1/2]d . To approximate XS we

consider X app ∼ DPPS(Capp) where

Capp(x , y) =
∑

k∈Zd

ϕ(k)e2πik·(x−y), x , y ∈ S.
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Examples of parametric models

We will focus on the following parametric models, where ρ > 0 is the intensity, α > 0

is a scale/range parameter, and ν > 0 is a shape parameter:

◮ Whittle-Matérn model, which includes the exponential model (ν = 1/2) and the

Gauss model (ν = ∞):

C0(x) = ρ
21−ν

Γ(ν)
‖x/α‖νKν(‖x/α‖), x ∈ R

d ,

The parameter restriction is ρ ≤ Γ(ν)
Γ(ν+d/2)(2

√
πα)d
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Parametric models in R

The parametric families are specified in R via the determinantal family functions:

dppGauss, dppMatern, dppPowerExp. E.g:

◮ model <- dppGauss(lambda=100, alpha=0.05, d=2)

◮ model <- dppMatern(lambda=100, alpha=0.03, nu=0.5, d=2)

◮ model <- dppPowerExp(lambda=100, alpha=0.17, nu=2, d=2)

Extract the kernel, spectral density, pair correlation function, K -function:

◮ dppkernel(model)

◮ dppspecden(model)

◮ pcfmodel(model)

◮ Kmodel(model)
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Illustration of simulation algorithm

Step 1. The first point is sampled uniformly on S.
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Illustration of simulation algorithm

Step 2. The next point is sampled w.r.t. the following density:

0
0

.2
0

.4
0

.6
0

.8
1

●
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Illustration of simulation algorithm

Step 3. The next point is sampled w.r.t. the following density:

0
0

.2
0

.4
0

.6
0

.8
1

●

●
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Illustration of simulation algorithm

Step 4. The next point is sampled w.r.t. the following density:

0
0

.2
0

.4
0

.6
0

.8
1

●

●
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Illustration of simulation algorithm

Step 5. The next point is sampled w.r.t. the following density:

0
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.2
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0

.6
0

.8
1
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Illustration of simulation algorithm

...somewhere in the middle...
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Illustration of simulation algorithm

Final point is sampled w.r.t. the following density:
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Simulation in R

Simply use the generic function simulate:

◮ model <- dppGauss(lambda=100, alpha=0.05, d=2)

X <- simulate(model)

◮ Change the window (default is the unit square):

W <- owin(poly=list(x=c(-1,0,1),y=c(0,1,0)))

X <- simulate(model, W=W)

◮ Several realizations:

X <- simulate(model, nsim=4)
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Mucous membrane dataset

Consists of the most abundant type of cell in a bivariate point pattern analysed in

Møller and Waagepetersen (2004).
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We use this unmarked point pattern to illustrate how an inhomogenous DPP can

be fitted to a real dataset.
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Modelling inhomogeneity

Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e.

the correlation function is translation invariant:

R0(x − y) = R(x , y) =
C(x , y)

√

C(x , x)C(y , y)
=

C(x , y)
√

ρ(x)ρ(y)

such that R(x , x) = 1.
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Modelling inhomogeneity

Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e.

the correlation function is translation invariant:

R0(x − y) = R(x , y) =
C(x , y)

√

C(x , x)C(y , y)
=

C(x , y)
√

ρ(x)ρ(y)

such that R(x , x) = 1.

◮ Fit a parametric model to ρ depending on relevant covariates (second

coordinate axis in our case).
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◮ Use the fitted intensity to estimate the inhomogeneous g- og K -function.
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◮ Fit a parametric model to ρ depending on relevant covariates (second

coordinate axis in our case).

◮ Use the fitted intensity to estimate the inhomogeneous g- og K -function.
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◮ The resulting DPP has

C(x , y) =
√

ρ̂(x)R̂0(x − y)
√

ρ̂(y).


