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Ege Rubak

» Determinantal point processes (DPP) are inhibitive (or regular, or repulsive)
pOII’It pI’OCGSSGS 2 | Definition, existence

and basic properties

» Introduced by O. Macchi in 1975 to model fermions in quantum mechanics.
» Several theoretical studies appeared in the 2000’s.

» Statistical modeling came along in the 2010’s and onward.

DPP with

Poisson DPP stronger inhibition
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» For any integer n > 0, denote p(”) the n'th order product density function of X. 3 ) Definition, existence
Intu itiVely, and basic properties
/)(n)(x1 yeey Xn)dXy - - dXp
is the probability that foreach i =1,...,n,

X has a point in a region around x; of volume dx;.
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Ege Rubak
» For any integer n > 0, denote p(”) the n'th order product density function of X. 3 ) Definition, existence
Intu itiVely, and basic properties
P (xq, .., Xp) dxy -+ - dXxp

is the probability that foreach i =1,...,n,
X has a point in a region around x; of volume dx;.

In particular p = p'" is the intensity function.
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Notation (((
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Ege Rubak

» For any integer n > 0, denote p'™ the n'th order product density function of X.

Intu itiVely, and basic properties
p(n)( ..... Xp) dxy -+ - dXxp

3 | Definition, existence

is the probability that foreach i =1,...,n,
X has a point in a region around x; of volume dx;.

In particular p = p'" is the intensity function.

» For any function C : RY x R? — C, denote [C](x1, ..., X») the n x n matrix with entries
C(xi, x;).

C(x1,x C(x1, X

Ex: [Cl(x) = C(x1,x1) [Cl(x1,%)= < ch;xl; CEX;XS > :
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Definition Ege Ru.bak
Let C be a function RY x RY — C. X is a determinantal point process with kernel C, '/ Seihiton edistence
denoted X ~ DPP(C), if its product density functions satisfy

For existence, conditions on the kernel C are mandatory
» C must e.g. satisfy: det[C](xi,...,x,) > 0 forall xq,..., X,
» Henceforth we assume

(C1) C is a continuous (complex) covariance function.
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» The intensity of X is p(x) = C(x, x). Ege Rubak
» The pair correlation function is = and basic ropertos
@)
P (Xfy) C(Xy)C(yX) 2
xoy) = W) g SXVIBWX) g gy
9N = 00) ' CtonClysy) XY

where R is the correlation function corresponding to C.
» Thus g < 1 (i.e. inhibition) since C is Hermitian by (C1).
> If X ~ DPP(C), then XB ~ DPPB(CB)

» Any smooth transformation or independent thinning of a DPP is still a DPP with
an explicitly given kernel.
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By Mercer’s theorem, for any compact set S ¢ RY, C restricted to S x S, denoted Ege Rubak
Cs, has a spectral representation, ¢ ) Definition, existence

and basic properties

=Y MR (x)e5(y), (x.y) € Sx S,
k=1

where A7 > 0 and {¢} is a set of orthonormal basis functions on S, i.e.,
[ 8009800 8x = 1

Theorem (Macchi, 1975)
Under (C1), existence of DPP(C) is equivalent to :

Mg <1 for all compact S ¢ R? and all k.
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Let X ~ DPP(C). We want to simulate Xs for S ¢ RY compact. Ege Rubak

7 | Definition, existence

Theorem (Hough et al. (2006)) and basic popertes

For k € N, let Bx be independent Bernoulli r.v. with mean /\f . Define

ZBkok )6S(y), (x,y) e SxS.

Then DPP(Cs) < DPP(K).

Note that almost surely there is a finite number of ones in the Bernoulli sequence
By since Y- \F = [5 C(x, x) dx < oo.
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Effectively we pick out n < oo eigenfunctions with probability according to their Ege Rubak
eigenvalues and simulate the DPP with finite rank kernel s ) Definition, existence
and basic properties
n
K(x,y) = 68 (x)op(y). (x.y)eSxS.
k=1

This is a projection kernel, and the corresponding DPP can be simulated using
rejection sampling.

The algorithm always produces n points. Thus,

n~> B, E[n =Y A Var[n]=> A1 -AP).
k=1 k=1
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Consider a stationary kernel: C(x,y) = Co(x — y), X,y € R9.

Ege Rubak

Its Fourier transform (or spectral density) is:
H(x) = / Co(t)e 21 dt, x € RV, ) Storary ores

Theorem
Under (C1), if Cy € L2(RY), then existence of DPP(C,) is equivalent to

p<1.

— This induces a restriction on the parameter space.

In practice, this restriction implies that if the intensity is large the range (effective
support) of Cy must be small. l.e. there is a trade-off between strong inhibiton and
large intensity.
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Approximation

Ege Rubak

10 | Stationary DPPs and
approximations

Without loss of generality we consider S = [-1/2,1/2]9. To approximate Xs we
consider X@® ~ DPPg(C,pp) Where

Capp(X,¥) = Y @(K)ETKOD, - xyes.

kezd
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We will focus on the following parametric models, where p > 0 is the intensity, & > 0 Ege Rubak
is a scale/range parameter, and v > 0 is a shape parameter:

» Whittle-Matérn model, which includes the exponential model (v = 1/2) and the
Gauss model (v = o0):

11 | Parametric models

1—v

Co(x) =p )

Ix/all*K,(Ix/all), x € R,

I(v)

The parameter restriction is p < 5=
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Parametric models in R .
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The parametric families are specified in R via the determinantal family functions: Ege Rubak
dppGauss, dppMatern, dppPowerExp. E.g:

» model <- dppGauss(lambda=100, alpha=0.05, d=2)

» model <- dppMatern(lambda=100, alpha=0.03, nu=0.5, d=2)
» model <- dppPowerExp(lambda=100, alpha=0.17, nu=2, d=2)
Extract the kernel, spectral density, pair correlation function, K-function:

» dppkernel (model)

12 | Parametric models

» dppspecden(model)
» pcfmodel (model)
» Kmodel (model)
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Step 1. The first point is sampled uniformly on S. Ege Rubak

13 | Simulation
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lllustration of simulation algorithm

Step 2. The next point is sampled w.r.t. the following density:
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13 | Simulation
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lllustration of simulation algorithm

Step 3. The next point is sampled w.r.t. the following density:
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13 | Simulation
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Step 4. The next point is sampled w.r.t. the following density: Ege Rubak
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Step 5. The next point is sampled w.r.t. the following density: Ege Rubak
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Final point is sampled w.r.t. the following density: Ege Rubak
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Simply use the generic function simulate: Ege Rubak
» model <- dppGauss(lambda=100, alpha=0.05, d=2)
X <- simulate(model)
» Change the window (default is the unit square):
W <- owin(poly=list(x=c(-1,0,1),y=c(0,1,0)))
X <- simulate(model, W=W)
» Several realizations:
X <- simulate(model, nsim=4)

14 | Simulation
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Mucous membrane dataset

Ege Rubak

Consists of the most abundant type of cell in a bivariate point pattern analysed in
Mgller and Waagepetersen (2004).

15 | Data example

We use this unmarked point pattern to illustrate how an inhomogenous DPP can
be fitted to a real dataset.
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Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e. Ege Rubak
the correlation function is translation invariant:
C(x.y) C(x,y)

Folx =) = R Y) = e 00ty Vor)

such that R(X X) =1. 16 | Data example
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Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e. Ege Rubak
the correlation function is translation invariant:
C(x, C(x,
Ro(x ~y) = R(x.y) = — 00 _C0Y)
VCX.X)C(y,y)  V/p(x)p(y)
such that R(X X) =1. 16 | Data example

» Fit a parametric model to p depending on relevant covariates (second
coordinate axis in our case).
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Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e. Ege Rubak
the correlation function is translation invariant:
C(x, C(x,
Rolx —y) = Alx.y) = =20l _Cx))
VCX.X)C(y,y)  V/p(x)p(y)
such that R(X X) =1. 16 | Data example

» Fit a parametric model to p depending on relevant covariates (second
coordinate axis in our case).

» Use the fitted intensity to estimate the inhomogeneous g- og K-function.
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Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e. Ege Rubak
the correlation function is translation invariant:
C(x, C(x,
Rolx —y) = Alx.y) = =20l _Cx))
VCX.X)C(y,y)  V/p(x)p(y)
such that R(X X) =1. 16 | Data example

» Fit a parametric model to p depending on relevant covariates (second
coordinate axis in our case).

» Use the fitted intensity to estimate the inhomogeneous g- og K-function.

» Fit a parametric model for Ry via minimum contrast.
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Assume correlation stationarity (second-order intensity-reweighted stationarity) i.e. Ege Rubak
the correlation function is translation invariant:
C(x, C(x,
Ro(x ) = Rlx.y) = o)t
VCX.X)C(y,y)  V/p(x)p(y)
such that R(X X) =1. 16 | Data example

» Fit a parametric model to p depending on relevant covariates (second
coordinate axis in our case).

» Use the fitted intensity to estimate the inhomogeneous g- og K-function.
» Fit a parametric model for Ry via minimum contrast.
» The resulting DPP has

C(x,y) = VB(X)Bo(x = Y)V/5(¥).
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