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1. Introduction

2. Inhomogeneous Intensity

3. Intensity dependent on a covariate

4. Fitting Poisson models

5. Marked point patterns

6. Correlation

7. Envelopes and Monte Carlo tests

8. Spacing and nearest neighbours

9. Cluster and Cox models

10. Gibbs models

11. Multitype summary functions and models
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These slides are a summary of

the most important concepts

in the workshop.

Use them for review/reminder
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Three basic types of spatial data:

� geostatistical

� regional

� point pattern



Geostatistical data
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GEOSTATISTICAL DATA:

The quantity of interest has a value at any location, . . .



Geostatistical data
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. . . but we only measure the quantity at certain sites. These values are our data.



Regional data
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REGIONAL DATA:

The quantity of interest is only defined for regions. It is measured/reported for certain fixed regions.



Point pattern data
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POINT PATTERN DATA:

The main interest is in the locations of all occurrences of some event (e.g. tree deaths, meteorite

impacts, robberies). Exact locations are recorded.



Points with marks
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Points may also carry data (e.g. tree heights, meteorite composition)



Point pattern or geostatistical data?
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POINT PATTERN OR GEOSTATISTICAL DATA?



Explanatory vs. response variables
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Response variable: the quantity that we want to “predict” or

“explain”

Explanatory variable: quantity that can be used to “predict” or

“explain” the response.



Point pattern or geostatistical data?
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Geostatistics treats the spatial locations as explanatory variables and the values

attached to them as response variables.

Spatial point pattern statistics treats the spatial locations, and the values

attached to them, as the response.



Point pattern or geostatistical data?
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“Temperature is increasing as we move from South to North” — geostatistics

“Trees become less abundant as we move from South to North” — point pattern

statistics
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For information on spatial statistics software in R:

� go to cran.r-project.org

� find Task Views --- Spatial
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GIS = Geographical Information System

ArcInfo proprietary esri.com

GRASS open source grass.osgeo.org



GRASS
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Recommendations:

For visualisation of spatial data, especially for presentation

graphics, use a GIS.

For statistical analysis of spatial data, use R.

Establish two-way communication between GIS and R,

either through a direct software interface, or by

reading/writing files in mutually acceptable format.
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RGIS
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RGIS

In
te

rf
ac

e

Interface between R and GIS (online or offline)



Putting the pieces together
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RGIS

spatial

data

supportIn
te

rf
ac

e

Support for spatial data: data structures, classes, methods



R packages supporting spatial data
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R packages supporting spatial data classes:

sp generic

maps polygon maps

spatstat point patterns
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RGIS

analysis

spatial

data

supportIn
te

rf
ac

e

Capabilities for statistical analysis



Putting the pieces together
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RGIS

analysis

spatial

data

support

analysis

analysis

In
te

rf
ac

e

Multiple packages for different analyses
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R packages for geostatistical data

gstat classical geostatistics

geoR model-based geostatistics

RandomFields stochastic processes

akima interpolation
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R packages for geostatistical data

gstat classical geostatistics

geoR model-based geostatistics

RandomFields stochastic processes

akima interpolation

R packages for regional data

spdep spatial dependence

spgwr geographically weighted regression

R packages for point patterns

spatstat parametric modelling, diagnostics

splancs nonparametric, space-time
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Spatial point patterns



Software
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The R package spatstat supports statistical analysis for spatial
point patterns.



Point patterns
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A point pattern dataset gives the locations of objects/events occurring in a study region.

The points could represent trees, animal nests, earthquake epicentres, petty crimes, domiciles of

new cases of influenza, galaxies, etc.



Marks
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The points may have extra information called marks attached to them. The mark represents an

“attribute” of the point.



Marks
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The points may have extra information called marks attached to them. The mark represents an

“attribute” of the point.

The mark variable could be categorical, e.g. species or disease status:

on

off

off

on



Continuous marks
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The mark variable could be continuous, e.g. tree diameter:

20

40

60



Covariates
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Our dataset may also include covariates — any data that we treat as explanatory, rather than as

part of the ‘response’.

Covariate data may be a spatial function Z(u) defined at all spatial locations u, e.g. altitude, soil

pH, displayed as a pixel image or a contour plot:
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Covariates
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Covariate data may be another spatial pattern such as another point pattern, or a line segment

pattern, e.g. a map of geological faults:



Spatial point patterns SSAI Course 2017 – 34

Intensity



Intensity
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‘Intensity’ is the average density of points (expected number of points per unit area).

Intensity may be constant (‘uniform’) or may vary from location to location (‘non-uniform’ or

‘inhomogeneous’).

  

uniform

  

inhomogeneous



Swedish Pines data
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> data(swedishpines)

> P <- swedishpines

> plot(P)



Quadrat counts
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Divide study region into rectangles (‘quadrats’) of equal size, and count points in each rectangle.
Q <- quadratcount(P, nx=3, ny=3)

Q

plot(Q, add=TRUE)
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If the points have uniform intensity, and are completely random, then the quadrat counts should be

Poisson random numbers with constant mean.
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If the points have uniform intensity, and are completely random, then the quadrat counts should be

Poisson random numbers with constant mean.

Use the χ2 goodness-of-fit test statistic

X2 =
∑ (observed − expected)2

expected
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If the points have uniform intensity, and are completely random, then the quadrat counts should be

Poisson random numbers with constant mean.

Use the χ2 goodness-of-fit test statistic

X2 =
∑ (observed − expected)2

expected

> quadrat.test(P, nx=3, ny=3)

Chi-squared test of CSR using quadrat counts

data: P

X-squared = 4.6761, df = 8, p-value = 0.7916



χ2 test of uniformity

Spatial point patterns SSAI Course 2017 – 39

> QT <- quadrat.test(P, nx=3, ny=3)

> plot(P)

> plot(QT, add=TRUE)
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Kernel smoothing
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u− xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.
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1. replace each data point by a square of chocolate
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Kernel smoothing
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u− xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.

1. replace each data point by a square of chocolate

2. melt chocolate with hair dryer

3. resulting landscape is a kernel smoothed estimate of intensity function



Kernel smoothing
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den <- density(P, sigma=15)

plot(den)

plot(P, add=TRUE)
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Modelling intensity
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A more searching analysis involves fitting models that describe how

the point pattern intensity λ(u) depends on spatial location u or on

spatial covariates Z(u).
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A more searching analysis involves fitting models that describe how

the point pattern intensity λ(u) depends on spatial location u or on

spatial covariates Z(u).

Intensity is modelled using a “log link”.
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COMMAND INTENSITY

ppm(P ~1) log λ(u) = β0
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COMMAND INTENSITY

ppm(P ~1) log λ(u) = β0

ppm(P ~x) log λ((x, y)) = β0 + β1x

ppm(P ~x + y) log λ((x, y)) = β0 + β1x+ β2y

β0, β1, . . . denote parameters to be estimated.



Swedish Pines data
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> ppm(P ~1)

Stationary Poisson process

Uniform intensity: 0.007



Swedish Pines data
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> ppm(P ~x+y)

Nonstationary Poisson process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

-5.1237 0.00461 -0.00025



Modelling intensity
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COMMAND INTENSITY

ppm(P ~polynom(x,y,3)) exp(3rd order polynomial in x and y)
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COMMAND INTENSITY

ppm(P ~polynom(x,y,3)) exp(3rd order polynomial in x and y)

ppm(P ~I(y > 18)) different constants above and below

the line y = 18



Fitted intensity
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fit <- ppm(P ~x+y)

lam <- predict(fit)

plot(lam)
The predict method computes fitted values of intensity function λ(u) at a grid of locations.

  lam
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Likelihood ratio test
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: ~1 Poisson

Model 2: ~x + y + I(x^2) + I(x * y) + I(y^2) Poisson

Npar Df Deviance Pr(>Chi)

1 1

2 6 5 7.4821 0.1872
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: ~1 Poisson

Model 2: ~x + y + I(x^2) + I(x * y) + I(y^2) Poisson

Npar Df Deviance Pr(>Chi)

1 1

2 6 5 7.4821 0.1872

The p-value 0.19 exceeds 0.05 so the log-quadratic spatial trend is not significant.



Residuals
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diagnose.ppm(fit0, which="smooth")
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Spatial covariates
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A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates

� terrain altitude

� soil pH

� distance from location u to another feature
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Covariates
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Covariate data may be another spatial pattern such as another point pattern, or a line segment

pattern:



Covariate effects
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For a point pattern dataset with covariate data, we typically

� investigate whether the intensity depends on the covariates

� allow for covariate effects on intensity before studying dependence between

points



Example: Queensland copper data

Spatial point patterns SSAI Course 2017 – 54

A intensive mineralogical survey yields a map of copper deposits (essentially pointlike at this scale)

and geological faults (straight lines). The faults can easily be observed from satellites, but the

copper deposits are hard to find.

Main question: whether the faults are ‘predictive’ for copper deposits (e.g. copper less/more likely to

be found near faults).



Copper data
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data(copper)

P <- copper$SouthPoints

Y <- copper$SouthLines

plot(P)

plot(Y, add=TRUE)
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For analysis, we need a value Z(u) defined at each location u.
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Copper data
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For analysis, we need a value Z(u) defined at each location u.

Example: Z(u) = distance from u to nearest line.

Z <- distmap(Y)

plot(Z)

  Z
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We want to determine whether intensity depends on a spatial covariate Z.

Plot C(z) against z, where C(z) = fraction of data points xi for which Z(xi) ≤ z.

Also plot C0(z) against z, where C0(z) = fraction of area of study region where Z(u) ≤ z.

lurking(ppm(P), Z)
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We want to determine whether intensity depends on a spatial covariate Z.

Plot C(z) against z, where C(z) = fraction of data points xi for which Z(xi) ≤ z.

Also plot C0(z) against z, where C0(z) = fraction of area of study region where Z(u) ≤ z.

lurking(ppm(P), Z)
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Kolmogorov-Smirnov test
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Formal test of agreement between C(z) and C0(z).
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Formal test of agreement between C(z) and C0(z).
> kstest(P, Z)

Spatial Kolmogorov-Smirnov test of CSR

data: covariate ’Z’ evaluated at points of ’P’

and transformed to uniform distribution under CSR

D = 0.1163, p-value = 0.3939

alternative hypothesis: two-sided



Copper data
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Z <- distmap(Y)

ppm(P ~ Z)

Fits the model

log λ(u) = β0 + β1Z(u)

where Z(u) is the distance from u to the nearest line segment.
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Z <- distmap(Y)

ppm(P ~ polynom(Z,5))
fits a model in which log λ(u) is a 5th order polynomial function of Z(u).



Copper data
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fit <- ppm(P ~polynom(Z,5))

plot(predict(fit))
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Copper data
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plot(effectfun(fit))
plots fitted curve of λ against Z .



Copper data
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(Z,5))

anova(fit0, fit1, test="Chi")
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(Z,5))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: ~1 Poisson

Model 2: ~Z + I(Z^2) + I(Z^3) + I(Z^4) + I(Z^5) Poisson

Npar Df Deviance Pr(>Chi)

1 1

2 6 5 3.6476 0.6012



Likelihood ratio test
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fit0 <- ppm(P ~1)

fit1 <- ppm(P ~polynom(Z,5))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: ~1 Poisson

Model 2: ~Z + I(Z^2) + I(Z^3) + I(Z^4) + I(Z^5) Poisson

Npar Df Deviance Pr(>Chi)

1 1

2 6 5 3.6476 0.6012

The p-value 0.81 exceeds 0.05 so the 5th order polynomial is not significant.



Interaction
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‘Interpoint interaction’ is stochastic dependence between the points in a point pattern. Usually we

expect dependence to be strongest between points that are close to one another.

  

independent

  

regular

  

clustered
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Example: spacing between points in Swedish Pines data

  swedishpines



Example
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nearest neighbour distance = distance from a given point to the nearest other point

  swedishpines
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Summary approach:
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2. divide by the value expected for a completely random pattern.

Clark & Evans (1954)
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Summary approach:

1. calculate average nearest-neighbour distance

2. divide by the value expected for a completely random pattern.

Clark & Evans (1954)

> mean(nndist(swedishpines))

[1] 7.90754

> clarkevans(swedishpines)

naive Donnelly cdf

1.360082 1.291069 1.322862
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Summary approach:

1. calculate average nearest-neighbour distance

2. divide by the value expected for a completely random pattern.

Clark & Evans (1954)

> mean(nndist(swedishpines))

[1] 7.90754

> clarkevans(swedishpines)

naive Donnelly cdf

1.360082 1.291069 1.322862

Value greater than 1 suggests a regular pattern.
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Exploratory approach:
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Exploratory approach:

� plot NND for each point

P <- swedishpines

marks(P) <- nndist(P)

plot(P, markscale=0.5)
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Exploratory approach:

� plot NND for each point

� look at empirical distribution of NND’s

plot(Gest(swedishpines))
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Modelling approach:

� Fit a stochastic model to the point pattern, with likelihood based on the NND’s.
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Modelling approach:

� Fit a stochastic model to the point pattern, with likelihood based on the NND’s.

> ppm(P ~1, Geyer(4,1))

Stationary Geyer saturation process

First order term:

beta

0.00971209

Fitted interaction parameter gamma: 0.6335



Example: Japanese pines
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Locations of 65 saplings of Japanese pine in a 5.7× 5.7 metre square sampling region in a natural

stand.
data(japanesepines)

J <- japanesepines

plot(J)

  Japanese Pines



Japanese Pines
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fit <- ppm(J ~polynom(x,y,3))

plot(predict(fit))

plot(J, add=TRUE)

  predict(fit)
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Adjusting for inhomogeneity
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If the intensity function λ(u) is known, or estimated from data, then
some statistics can be adjusted by counting each data point xi with a
weight wi = 1/λ(xi).



Inhomogeneous K-function
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lam <- predict(fit)

plot(Kinhom(J, lam))
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Conditional intensity
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A point process model can also be defined through its conditional intensity λ(u | x).
This is essentially the conditional probability of finding a point of the process at the location u, given

complete information about the rest of the process x.

u



Strauss process
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Strauss(γ = 0.2) Strauss(γ = 0.7)
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The command ppm will also fit Gibbs models, using the technique of ‘maximum pseudolikelihood’.
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The command ppm will also fit Gibbs models, using the technique of ‘maximum pseudolikelihood’.

data(swedishpines)

ppm(swedishpines ~1, Strauss(r=7))
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The command ppm will also fit Gibbs models, using the technique of ‘maximum pseudolikelihood’.

data(swedishpines)

ppm(swedishpines ~1, Strauss(r=7))

Stationary Strauss process

First order term:

beta

0.02583902

Interaction: Strauss process

interaction distance: 7

Fitted interaction parameter gamma: 0.1841
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The model can include both spatial trend and interpoint interaction.
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The model can include both spatial trend and interpoint interaction.
data(japanesepines)

ppm(japanesepines ~polynom(x,y,3), Strauss(r=0.07))
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The model can include both spatial trend and interpoint interaction.
data(japanesepines)

ppm(japanesepines ~polynom(x,y,3), Strauss(r=0.07))
Nonstationary Strauss process

Trend formula: ~polynom(x, y, 3)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 3)[x] polynom(x, y, 3)[y]

0.4925368 22.0485400 -9.1889134

polynom(x, y, 3)[x^2] polynom(x, y, 3)[x.y] polynom(x, y, 3)[y^2]

-14.6524958 -41.0222232 50.2099917

polynom(x, y, 3)[x^3] polynom(x, y, 3)[x^2.y] polynom(x, y, 3)[x.y^2]

3.4935300 5.4524828 23.9209323

polynom(x, y, 3)[y^3]

-38.3946389

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.5323



Plotting a fitted model
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When we plot or predict a fitted Gibbs model, the first order trend β(u) and/or the conditional

intensity λ(u | x) are plotted.

fit <- ppm(japanesepines ~x, Strauss(r=0.1))

plot(predict(fit))

plot(predict(fit, type="cif"))
  predict(fit)
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Simulating the fitted model

Spatial point patterns SSAI Course 2017 – 81

A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which

only requires the conditional intensity).
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A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which

only requires the conditional intensity).
fit <- ppm(swedishpines ~1, Strauss(r=7))

Xsim <- simulate(fit)

plot(Xsim)



Simulating the fitted model
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A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which

only requires the conditional intensity).
fit <- ppm(swedishpines ~1, Strauss(r=7))

Xsim <- simulate(fit)

plot(Xsim)

  Xsim



Simulation-based tests
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Tests of goodness-of-fit can be performed by simulating from the fitted model.

plot(envelope(fit, Gest, nsim=19))
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More powerful diagnostics are available.

diagnose.ppm(fit)
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Marks



Marks
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Each point in a spatial point pattern may carry additional information called a ‘mark’. It may be

a continuous variate: tree diameter, tree height

a categorical variate: label classifying the points into two or more different types (on/off,

case/control, species, colour)

20

40

60

on

off

In spatstat version 1, the mark attached to each point must be a single value.
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Categorical marks



Categorical marks
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A point pattern with categorical marks is usually called “multi-type”.
> data(amacrine)

> amacrine

marked planar point pattern: 294 points

multitype, with levels = off on

window: rectangle = [0, 1.6012] x [0, 1] units (one unit = 662 microns)

> plot(amacrine)
  amacrine

on

off



Multitype point patterns
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summary(amacrine)



Multitype point patterns

Spatial point patterns SSAI Course 2017 – 88

summary(amacrine)

Marked planar point pattern: 294 points

Average intensity 184 points per square unit (one unit = 662 microns)

Multitype:

frequency proportion intensity

off 142 0.483 88.7

on 152 0.517 94.9

Window: rectangle = [0, 1.6012] x [0, 1] units

Window area = 1.60121 square units

Unit of length: 662 microns



Intensity of multitype patterns

Spatial point patterns SSAI Course 2017 – 89

plot(split(amacrine))
split(amacrine)  

off

  

on



Intensity of multitype patterns
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data(lansing)

summary(lansing)

plot(lansing)
  lansing

whiteoak

redoak

misc

maple

hickory

blackoak



Intensity of multitype patterns
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“Segregation” occurs when the intensity depends on the mark (i.e. on the type of point).

plot(split(lansing))
split(lansing)  

blackoak

  

hickory

  

maple

  

misc

  

redoak

  

whiteoak



Intensity of multitype patterns
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Let λ(u,m) be the intensity function for points of type m at location u. This can be estimated by

kernel smoothing the data points of type m.

plot(density(split(lansing)))

blackoak hickory maple

misc redoak whiteoak



Segregation
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The probability that a point at location u has mark m is

p(m | u) =
λ(u,m)

λ(u)

where λ(u) =
∑

m λ(u,m) is the intensity function of points of all types.



Segregation
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lansP <- relrisk(lansing)

plot(lansP)

  blackoak
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Interaction between types



Interaction between types
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In a multitype point pattern, there may be interaction between the points of different types, or

between points of the same type.
  amacrine

on

off



Bivariate G-function
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Assume the points of type i have uniform intensity λi, for all i.

For two given types i and j, the bivariate G-function Gij is

Gij(r) = P (Rij ≤ r)

where Rij is the distance from a typical point of type i to the nearest point of type j.



Bivariate G-function
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plot(Gcross(amacrine, "on", "off"))
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Bivariate G-function
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plot(alltypes(amacrine, Gcross))
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks)
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x)
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x) log λ((x, y),m) = βm + αx
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Common spatial trend
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Different constant intensity for points of each type.
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Different overall intensity for each type.
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x) log λ((x, y),m) = βm + αx

Common spatial trend

Different overall intensity for each type.

ppm(X ~marks + x + marks:x)



Fitting Poisson models

Spatial point patterns SSAI Course 2017 – 100

For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x) log λ((x, y),m) = βm + αx

Common spatial trend

Different overall intensity for each type.

ppm(X ~marks + x + marks:x) equivalent to

ppm(X ~marks * x)
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x) log λ((x, y),m) = βm + αx

Common spatial trend

Different overall intensity for each type.

ppm(X ~marks + x + marks:x) equivalent to

ppm(X ~marks * x) log λ((x, y),m) = βm + αmx
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For a multitype point pattern:

COMMAND INTERPRETATION

ppm(X ~1) log λ(u,m) = β constant.

Equal intensity for points of each type.

ppm(X ~marks) log λ(u,m) = βm

Different constant intensity for points of each type.

ppm(X ~marks + x) log λ((x, y),m) = βm + αx

Common spatial trend

Different overall intensity for each type.

ppm(X ~marks + x + marks:x) equivalent to

ppm(X ~marks * x) log λ((x, y),m) = βm + αmx

Different spatial trends for each type
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Likelihood ratio test of segregation in Lansing Woods data:
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Likelihood ratio test of segregation in Lansing Woods data:

fit0 <- ppm(lansing ~marks + polynom(x,y,3))

fit1 <- ppm(lansing ~marks * polynom(x,y,3))

anova(fit0, fit1, test="Chi")



Segregation test

Spatial point patterns SSAI Course 2017 – 101

Likelihood ratio test of segregation in Lansing Woods data:

fit0 <- ppm(lansing ~marks + polynom(x,y,3))

fit1 <- ppm(lansing ~marks * polynom(x,y,3))

anova(fit0, fit1, test="Chi")

Analysis of Deviance Table

Model 1: ~marks + (x + y + I(x^2) + I(x * y) +

I(y^2) + I(x^3) + I(x^2 * y) + I(x * y^2) + I(y^3)) Poisson

Model 2: ~marks * (x + y + I(x^2) + I(x * y) +

I(y^2) + I(x^3) + I(x^2 * y) + I(x * y^2) + I(y^3)) Poisson

Npar Df Deviance Pr(>Chi)

1 15

2 60 45 612.57 < 2.2e-16 ***



Fitted intensity
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fit1 <- ppm(lansing ~marks * polynom(x,y,3))

plot(predict(fit1))

predict(fit1)

blackoak hickory maple

misc redoak whiteoak



Inhomogeneous multitype K function

Spatial point patterns SSAI Course 2017 – 103

Inhomogeneous K function can be generalised to inhomogeneous multitype K function.
fit1 <- ppm(lansing ~marks * polynom(x,y,3))

lamb <- predict(fit1)

plot(Kcross.inhom(lansing, "maple","hickory",

lamb$markmaple, lamb$markhickory))
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Multitype Gibbs models



Conditional intensity
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The conditional intensity λ(u,m | x) is essentially the conditional probability of finding a point of

type m at location u, given complete information about the rest of the process x.

u



Multitype Strauss process
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> ppm(amacrine ~marks, Strauss(r=0.04))

Stationary Strauss process

First order terms:

beta_off beta_on

156.0724 162.1160

Interaction: Strauss process

interaction distance: 0.04

Fitted interaction parameter gamma: 0.4464



Multitype Strauss process
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> rad <- matrix(c(0.03, 0.04, 0.04, 0.02), 2, 2)

> ppm(amacrine ~ marks,

MultiStrauss(radii=rad,types=c("off", "on")))

Stationary Multitype Strauss process

First order terms:

beta_off beta_on

120.2312 108.8413

Interaction radii:

off on

off 0.03 0.04

on 0.04 0.02

Fitted interaction parameters gamma_ij:

off on

off 0.0619 0.8786

on 0.8786 0.0000
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www.spatstat.org
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