library(spatstat)
In this exercise we work with the spatstat dataset
murchison rescaled to km (applying rescale to
a spatial object list (solist)):
mur <- solapply(murchison, rescale, s = 1000, unitname = "km")
Read the help file for murchison (in
spatstat.data) and reproduce the plot given in the
Examples section of the help file.
Add the distance to the neareast fault line to the spatial object
list mur:
mur$dfault <- distfun(mur$faults)
Now, consider the Poisson model:
model_d <- ppm(gold ~ dfault, data = mur)
model_d
## Nonstationary Poisson process
##
## Log intensity: ~dfault
##
## Fitted trend coefficients:
## (Intercept) dfault
## -4.3412775 -0.2607664
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -4.3412775 0.08556260 -4.5089771 -4.1735779 *** -50.73802
## dfault -0.2607664 0.02018789 -0.3003339 -0.2211988 *** -12.91697
Write the estimated intensity function \(\hat\lambda(u)\) as a function of the distance to the nearest fault, \(D(u)\), with the parameter values inserted.
Consider the model
model_g <- ppm(gold ~ greenstone, data = mur)
model_g
## Nonstationary Poisson process
##
## Log intensity: ~greenstone
##
## Fitted trend coefficients:
## (Intercept) greenstoneTRUE
## -8.103178 3.980409
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -8.103178 0.1666667 -8.429839 -7.776517 *** -48.61907
## greenstoneTRUE 3.980409 0.1798443 3.627920 4.332897 *** 22.13252
What does this model state about the intensity function? (Hint: the plot you produce below may be helpful.)
Use predict.ppm() to calculate the estimated
intensity function and plot it.
Consider the model
model_dg <- ppm(gold ~ dfault + greenstone, data = mur)
model_dg
## Nonstationary Poisson process
##
## Log intensity: ~dfault + greenstone
##
## Fitted trend coefficients:
## (Intercept) dfault greenstoneTRUE
## -6.6171116 -0.1037835 2.7539637
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -6.6171116 0.21707953 -7.0425796 -6.19164351 *** -30.482430
## dfault -0.1037835 0.01794981 -0.1389645 -0.06860255 *** -5.781874
## greenstoneTRUE 2.7539637 0.20655423 2.3491248 3.15880250 *** 13.332885
and write down \(\hat\lambda(u)\) as a function of the distance to the nearest fault, \(D(u)\), and the greenstone indicator function \[ G(u) = 1\{u \, \text{ in greenstone area}\} \] with the parameter values inserted.
Fit a cluster model of your choice to the mur data with
the same intensity model using
kppm(gold ~ dfault + greenstone, ..., data = mur).
Compare the standard errors obtained for this cluster model with the
standard errors for the Poisson model model_dg.