library(spatstat)
In this exercise we work with the spatstat
dataset
murchison
rescaled to km (applying rescale
to
a spatial object list (solist
)):
mur <- solapply(murchison, rescale, s = 1000, unitname = "km")
Read the help file for murchison
(in
spatstat.data
) and reproduce the plot given in the
Examples section of the help file.
Add the distance to the neareast fault line to the spatial object
list mur
:
mur$dfault <- distfun(mur$faults)
Now, consider the Poisson model:
model_d <- ppm(gold ~ dfault, data = mur)
model_d
## Nonstationary Poisson process
##
## Log intensity: ~dfault
##
## Fitted trend coefficients:
## (Intercept) dfault
## -4.3412775 -0.2607664
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -4.3412775 0.08556260 -4.5089771 -4.1735779 *** -50.73802
## dfault -0.2607664 0.02018789 -0.3003339 -0.2211988 *** -12.91697
Write the estimated intensity function \(\hat\lambda(u)\) as a function of the distance to the nearest fault, \(D(u)\), with the parameter values inserted.
Consider the model
model_g <- ppm(gold ~ greenstone, data = mur)
model_g
## Nonstationary Poisson process
##
## Log intensity: ~greenstone
##
## Fitted trend coefficients:
## (Intercept) greenstoneTRUE
## -8.103178 3.980409
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -8.103178 0.1666667 -8.429839 -7.776517 *** -48.61907
## greenstoneTRUE 3.980409 0.1798443 3.627920 4.332897 *** 22.13252
What does this model state about the intensity function? (Hint: the plot you produce below may be helpful.)
Use predict.ppm()
to calculate the estimated
intensity function and plot it.
Consider the model
model_dg <- ppm(gold ~ dfault + greenstone, data = mur)
model_dg
## Nonstationary Poisson process
##
## Log intensity: ~dfault + greenstone
##
## Fitted trend coefficients:
## (Intercept) dfault greenstoneTRUE
## -6.6171116 -0.1037835 2.7539637
##
## Estimate S.E. CI95.lo CI95.hi Ztest Zval
## (Intercept) -6.6171116 0.21707953 -7.0425796 -6.19164351 *** -30.482430
## dfault -0.1037835 0.01794981 -0.1389645 -0.06860255 *** -5.781874
## greenstoneTRUE 2.7539637 0.20655423 2.3491248 3.15880250 *** 13.332885
and write down \(\hat\lambda(u)\) as a function of the distance to the nearest fault, \(D(u)\), and the greenstone indicator function \[ G(u) = 1\{u \, \text{ in greenstone area}\} \] with the parameter values inserted.
Fit a cluster model of your choice to the mur
data with
the same intensity model using
kppm(gold ~ dfault + greenstone, ..., data = mur)
.
Compare the standard errors obtained for this cluster model with the
standard errors for the Poisson model model_dg
.